
A Numerical Study of Topological Features of 
Certain Hilbert Fundamental Domains* 

By Harvey Cohn 

9. Revision of Program. An earlier program, described in [6], tells how 
we can examine the three-dimensional floor of a four-dimensional Hilbert funda- 
mental domain. The geometry of such domains is of recent analytic interest [2], 
[8], but we had done little more than count the number of essentially different 
three-dimensional "analytic pieces." Actually, these pieces paired off under the 
modular group H to form an "essentially compact" domain just as the opposite 
sides of the well-known period parallelogram pair off under their translation group 
to form a torus. 

We revise this earlier program so as to clarify the pairing process and the rela- 
tive positions of these three-dimensional analytic pieces of the floor. We restrict 
ourselves to the fields of k112 where k = 5, 2, 3, 6; indeed, even these cases reveal 
the practical limitations of our methods. The fact that we are pairing off points in 
an interesting fibre space (see Section 12 below) might justify the crude efforts of 
the present attempt at visualization. 

To understand the desired revision, let us recall that (as in (3.16)) the last 
program provided us with output consisting of 

(9.1) Z I; 5, a, 

where Z, Z' is a point of the floor on the analytical three-dimensional piece pro- 
vided by 

(9.2) lyZ + ?l = I yZ + ?i2 LyZ? + '12= 1. 

What we want to do is to interlace each print-out (9.1) with 

(9.3) Z*, Z*; 

where Z*, Z*' represents the matching point paired with Z, Z' by 

(9.4) Z* = (aZ + 3)/(yZ + 5) 

(and likewise for the "primed" quantities). Here a, ,3 E 0 (just as y, 5) and 

(9.5) ab- y = e (>> O) 

for E a unit in 0. 
In the more recent paper [7], it is shown that exactly one Z* , Z*' (of the floor) 

pairs off with each Z, Z' (of the floor) under H except for sets of lower dimension 
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than three, where several different pairings can occur. (This is like saying that two 
opposite sides of the period parallelogram pair off "pointwise" uniquely except for 
each of four corners which pairs off with any other corner.) 

Actually, the print-out (9.3) appears in a fashion very similar to (3.16), except 
for the omission of the "epsilon" (error S2): 

(9.6) R1*, R2*, *,S2* X*, X*', Y*, Y*', a,, a2, b1, b2. 

Here, in keeping with the usual terminology of (2.2), we set 

(9.7) Z* = X* + iY*, Z*' = X*' + iY*' 

and we define Ri*, R2* by (2.9) and Si*, S2* by (3.1) and (3.2). Finally, analo- 
gously with (2.1) or 

(9.8) y=yg1 + q2w, =di + d2co 

we set 

(9.9) a a, + a2w, 3b + b2w. 

Thus, we want to obtain successive pairs (3.16) and (9.6) (schematically 
representing (9.1) and (9.3)) from the revised computation. 

10. Computation Procedure. The denominator in (9.4) was seen (in Section 
3) to be determined by they, 6 of (9.2). Hence, only a, 3 need be determined. Thus, 
from (9.1) we set up a "first approximation" to Z* , namely 

(10.1) Zo (aoz + go)/(,yz + 6) 

where ao and go are determined in 0 so as to make aob - loy = 1 (the most con- 
venient totally-positive unit). 

(i) Therefore, the earlier runs are scanned and the output values of (e, 6) 
(actually gq , g2, di, d2) are listed manually with arbitrary values of ao , f#o satisfy- 
ing aob - fory = 1 (as calculated manually). This creates an 8 column table of 
integers if we set ao = a10 + coa2?, go = bo0 + wb2o with each line looking like 

(10.2) fi 92, di , d2; a a20, b ?, b2. 

(See Remark (e) in Section 13 below.) The machine can now look up ao and g#, 
for each y, 6. 

Thus from any set of data (9.1) the machine finds ao and flo from the table 
(10.2). Such values are not unique, to the extent that 

(10.3) Z* = e+Zo + v (v E 0) 

where the integer t and v remain to be determined. The machine determines e+ 
by asking if the ratio Yo'/Yo = S, (formed from Zo, Z0') satisfies 

(10.4) h > Sl? > -h 

as required by the fundamental domain (see (3.3)). Therefore according as So is 
too big ( > h) or too small ( <-h), we replace (Z*, Z*') by ( e+Z*, . E+-Z*) or 
by (e -7Z*, E+Z*'). This process is "looped" until (10.4) is satisfied by (the new) 
S? (see Remark (f)). 
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(ii) Therefore the further input information is required, consisting of the 
ratios (see Table 1, Section 3) 

(10.5) h = hil/h2 

written as an actual fraction (since h2 would not always be 1 if the range of k is 
extended) and consisting of the fundamental totally-positive unit 

(10.6) Ul, u2 (e + Ul + U2CO). 

Now we have a correct value of e+tZo, but we need to add v to it to bring it 
under the translational limitations (2.9a, b). Here we convert E+tZo, E+-tZo' into 
the R1, R2, SI, S2 values. We find SI within (10.4) but R, and R2 do not yet lie 
within (-i1, 1). We therefore let Mi be the closest integer to R. (i = 1, 2) and set 

(10.7) -v M1 + M2w, -v = M1 + M2w' 

and finally obtain Z. = E+tZo + v, etc., in the form Ri*, R2*, SI S2*. 

As an added check on accuracy, S2 = S2*, (since each of these two values is 
supposed to be a maximum under linear transformations (9.4)). We achieve this 
to the print-out accuracy (of i0- ) with the error limit of 106 in solving (3.11). 
It should be clear to the reader how the information in (i) and (ii) is entered into 
the memory by additional input cards. 

11. Interpretation of Invariants. We are now in a position to see how the 
analytic pieces of the floor will pair off, but we must recall that the meaning of 
"pieces" is somewhat artificial. We insist on the sanctity of the "wedge relation- 
ship" (2.8) or (3.3) but we permit the translation operations Z -+ Z + v to be 
freely used so as to sacrifice the parallelogram relations (2.9a) in the idea of an 
"analytic piece." In other words, each piece is identified only by the invariant 
residue class of 6 modulo y, for which we say the center is at 

(11.1) x = -8/y, x' = -6'/. 

The classes are listed in Table 3 (of Section 7 above). 
In the case of a simple floor, k = 5, actually 7 "subpieces" are translated to 

form the single "analytic piece" (see Section 7 above). These "subpieces" all belong 
to the residue class of 0 (mod 1). Their interrelation is too complicated to draw 
even from what we conjecture to be a completely adequate sample of points. 
Hence no diagram is offered for k = 5 and in any other case the "piece" (or "sub- 
pieces") corresponding to 0 (mod 1) will be ignored. 

Generally speaking the transformation (9.4) can be written as 

(11.2) (YZ* - a) = -e/(yZ + 8) (e >> ). 

Hence the piece which pairs off with "8 modulo Py" is simply "-a modulo y" where 

(11.3) ab e (mod y). 

The center (11.1) becomes matched with the center 

(11.4) x* = al/y, x* = a'/y'. 

Furthermore, if we introduce the new variables (actually conjugate pairs) 

(11.5) r = 'yZ + 6, t* = PyZ*-a 
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the transformations take the convenient form 

(11.6) = -e 

which can be explained as an "approximate" inversion relation about the centers 
(11.1) and (11.4), (remember that S2 and Y, Y', Y*, Y*' are all bounded from 
below so that imaginary parts never vanish). 

An examination of the output leads to Table 4 for the cases k = 2, 3, 6 and 
[ N(y) I > 1. The labeling of the centers by subscripts showing the norm should be 
self-explanatory. We note that the centers (11.1) and (11.4) are fortuitously the 
same (a + a = 0) so only one need be listed. The pieces also will be labelled for 
convenience by I N(7y) I except when k = 6, we use 3 and 3' to denote the two 
pieces of norm 3. 

In the case k = 2, y = 21/2, the designation 22 = - 1/2* stands for four dif- 
ferent transformations in the output, namely Z = T(Z*) where 

(11.7) 
T(Z*) = Z*/(21I2Z* + 1), -Z*/(212Z* -1) (-Z* - 2 12)/(21/2Z* + 1) 

and (Z* - 21 )/(21/2Z* - 1). 

For the case k = 3, My = 1 + 31/2, the number of transformations involved is 16. 
This should give the reader an idea of the number of different matchings of the 
subpieces of just one analytic piece! 

12. Visualization of Pieces of Floor. Let us now reconsider the mode of rep- 
resentation of the floor. It consists of a hypersurface of dimension 3 taking the form 
S2 = f(Ri, R2, SI) (see (3.15)), but the domain of R1, R2, SI is a rectangular 
parallelepiped with "torus-like" identifications of boundaries. Indeed, from (2.9a), 
R1, R2 constitutes a 2-torus (taking each coordinate modulo 1); and these 2-tori 
are fibre8 while Si varies (see (3.3)) over the range (-h, h) constituting the base 
of a fibre space (see [10]). The periodicity of SI (modulo 2h) makes the base a one- 
sphere (or one-torus for that matter) but a group is associated with the fibre space. 
If (R1+, R2+) denotes the torus at S1 = +h and (RI-, R2 ) denotes the torus at 
S2 = -h then the tori are defined by Z- = Z+c+ or 

(12.1) (R1+ + k'2R2+)E+ _ (RV- + k"2R2) (mod 0). 

TABLE 4 
Matching Relations of Pieces in Table 3 for I N(y) I_> 1 

k IN~~~~~v)I ~~- S) a (Eq XI N&Y I k (label) y (mod y) (Eq. (Eq. (11 . 1)) 

2 2 21/2 1 1 -21/2/2 
3 2 1 + 31/2 1, 1 E+ (-1 - 3112)/2 
6 2 2 + 61/2 11 e+ -61/2/2 

3 3 + 61/2 1, 1 e+ -61I2/3 

3' 3 + 61/2 -1, -1 e+ 61/2/3 
4 2 1 + 61/2, 1 + 61/2 1 (-1 -61I2)/2 
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Here we exclude k = 1 (mod 4) for convenience and recall that E+ is written as 
UI + u2k"2. Then (12.1) is a matrix relation (modulo one) 

(12.2) M= Mk==(U Am) 

where a fairly complicated pattern of identifications emerges for the tori at Si +h 
and -h, e.g., 

(12.3) M2 = 2 3) M3 =1 3)2 M6 2 (5 2 

Thus we are dealing with the fibre space of a 3-torus under group (12.2) with 
further interior identifications in accordance with (9.1) and (9.3). The homology 
group of the fibre space is determined by the vertical sections; i.e., the lines R1I 
const, R2 = const, determined by 

(12.4) Mk (R2) (R:) (mod 1). 

The matter of these homology groups is discussed further in [9], but right here, the 
important fact is that an analytic piece of the floor often extends from SI = -h 
to Si = +h where it is pinched to the same point R1 = const, R2 = const at both 
end points. This can happen only when (R1, R2) corresponds to a vertical section. 
Examples of this occur in each case. 

k = 2. When k = 2, the piece of norm 2 is very much like an ordinary propeller 
(airscrew) extending along to vertical section at X2 or = 0,R2 =- 2 and pinched 
to a point not only at Si = i1 but also at Si = 0. We display some (R1, R2) 
cross-sections in Fig. 2 so as to convey the idea of a "twisted propeller blade." 

We have a final adaptation of the output where the norm of each point of the floor is 
printed (as a single digit) at the lattice points giving an immediate view of the pieces in 
the (R1, R2) cross-section for constant Si ( <0). The diagrams are self-explanatory. 
In each case, the symmetry R1 -* +R1 , R2 -* -R2, S1 -* -51 (a reflection about 
RI = - I in the (R1, R2) plane), will enable us to imagine the rest of the cross- 
sections, where S1 > 0. 

k= 3. We do likewise for k = 3 displaying cross-section again, but here the 
piece of norm 2 becomes pinched to a point only at S1 :41: and not at S1 = 0. 
When S1 0, O.this piece bulges around x2 at (R1, R2) = (-I, - ) so as to reach 
across from (R1 , R2) = (-1, -2) to (O -2), as shown in Fig. 3. (Here we always 
use coordinates R1 and R2 modulo 1.) 

In both Fig. 2 and Fig. 3 the center x2 lines at the center of each cross-section. 
k = 6. For k = 6 we have a much more complicated situation. The piece of the 

floor of norm 4 is again propeller-shaped, surrounding the vertical section at X4 of 
(R1 , R2) = (-2, -2) and pinched to a point at S1 = 0, ?2 (similar to the piece 
of norm 2 for k = 2). 

The piece of norm 3 is, however, like a "bent" propeller. It starts at X4 or (R1, 
R2) = (-1 -2I) for S1 = -2 and extends to X3 at (0, -) at S1 = 0 where it is 
pinched to a point. It continues from X3 or (0, - ) (-1, -1) back to (--, ) 

at Si = +2, where it is pinched to a point again. The piece labelled by norm 3' 
is symmetric; it extends from (-2, - ) at Si = -2 through X3V or (-1, -a) 
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-(0,-2) at 
Si 

= 0 and then from (0, -) at S1 = 0 back to 
(- -2-) at 

Si = +2. (See Remark (g) in Section 13 below.) 
The piece of norm 2 fits in more remarkably as shown in Fig. 4. It begins at 

S -2 around its centerx2represented twice or (RI ,R2) = (0, -1) (-1, -1) 
and expands so as to "swallow" all other norms by the time Si reaches 0. Mean- 
while, when Si reaches SA = -1.226 ... (approx.) the piece of norm 2 attaches 
itself to the pieces of norms 3 and 4 at point ZA where regions of norms 1, 2, 3, and 
4 all meet. (This is shown roughly in Fig. 4 by using Si = -1.2.) By the time 
SI = -1 then the piece of norm 2 splits the two pieces of norms 3 and 4 at a point 
Zo which is precisely the point at which we conjectured minimal height S2 = .2 in 
(4.2). As Si increases to 0, the pieces of norms 3 and 4 separate and shrink to the 
centers x3 and X4 (see Table 4). 

Of incidental interest is the fact that ZA , the point of attachment just described 
(in Fig. 4) is not an intuitively obvious point. About a half-hour was devoted to 
running finer and finer grids in order to approximate it. The final grid used was at 
maximum accuracy permitted by an input of four decimal digits (a purely me- 
chanical and unintentional limitation), namely 

AR1 = AR2 = AS1 = .0001. 

A good approximation seems to be 

ZA = -1.5899 + .8562i, ZA' = .7695 + .2851i 

(RIR2) = (-.4102, -.4816), SI= - 1.2256, S2 = .2441 

but the exact values (possibly as surds) are elusive. Strangely enough, it is easy 
to get four conditions to determine ZA by examining optimizing denominators 
II yZ + a I= 1 for points 2 near ZA . We find four equations corresponding to 
the pairs 

('y) (1 1) (2 + 61/2, 3 + 61/2), (3 + 61/2,2 + 61/2), (2,1 + 61/2). 

13. Concluding Remarks. (e) The combination ('y, 5) = (1, 5) is so frequent 
that the program is made to have the additional convenience that such listings are 
omitted and when y = 1 the machine automatically ignores 5 and comes up with 
ao = 0, fib = -1 when y = 1. This was done by a "dummy listing" in (10.2) 
consisting of 

(13.1) 1, ,0 ,0 0; 0,0, -1, 0. 

Thus the table (10.2) is reasonably short consisting of one item (the "dummy") 
when k = 5, seven items when k = 2 or 3, and 21 items when k = 6. An error 
print-out informs us if some (e, 5) had been inadvertently omitted from the table 
(except for -y = 1). 

(f) The machine is given a limit of 10 tallies (to an error print-out) for the 
iteration under discussion since a factor of e+'0 would be preposterously large. No 
error print-out was encountered in practice. 

(g) Here it is clear why we need the matching of (9.1) and (9.3). The earlier 
program in [6] made it clear how to label each piece according to I N(-y) I but we 
would not know how to match the various segments of norm 3 otherwise. 
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FIG. 4. Cross-sections of the floor when k = 6 for Si -1.4 -1.2, -1, -.6. The piece 

of norm 3 is in the upper iight of each cross-section while the piece of norm 3' is in the lower 
left. The centers X2 , X3 , X3' , r4 are the same on all cross-sections but are shown once only for 

simplicity. When S1 = -2, the pieces of norms 3, 3', 4 shrink to X4 and the piece of norm 2 
shrinks to X2 . When S1 = 0, the pieces of norm 3, 3' and 4 shrink to X3 , X3' and X4 respectively 
while the piece of norm 2 spreads slightly further than shown in SI 6 
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In summary, the modified program slowed down the process to the production 
of about 5 to 10 matching pairs (9.1) and (9.3) a second on the CDC 3600. Clearly 
the speed is far too slow for running the program directly on visual input-output 
facilities. The great aid achieved in visualizing four-dimensional regions cannot be 
denied if the time factor could be overcome. (Indeed, even the floors of three- 
dimensional modular regions are extremely difficult to visualize, see [11].) Further 
work in visualization will undoubtedly require previous storage for fast access. We 
are still nowhere near some ultimate purpose such as "seeing" homology generators 
as immediately as in two-dimensional manifolds. 
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